Abril 8, 2015 | Carlos Ochoa

Muestreo probabilístico: muestreo aleatorio simple

Siguiendo con nuestra serie de posts dedicados al muestreo, hoy revisaremos la primera de las técnicas de muestreo probabilístico: el muestreo aleatorio simple. Esta técnica es una de las más populares y sirve de referencia a todas las demás aunque, como ya comentamos, en la práctica difícilmente puede utilizarse.

Definición

El muestreo aleatorio simple (M.A.S.) es la técnica de muestreo en la que todos los elementos que forman el universo y que, por lo tanto, están descritos  en el marco muestral, tienen idéntica probabilidad de ser seleccionados para la muestra. Sería algo así como hacer un sorteo justo entre los individuos del universo: asignamos a cada persona un boleto con un número correlativo, introducimos los números en una urna y empezamos a extraer al azar boletos. Todos los individuos que tengan un número extraído de la urna formarían la muestra. Obviamente, en la práctica estos métodos pueden automatizarse mediante el uso de ordenadores.

Simple_random_sampling

Dependiendo de si los individuos del universo pueden ser seleccionados más de una vez en la muestra, hablaremos de M.A.S. con reposición o sin reposición. Si usamos reposición, el hecho de que seleccione un individuo al azar para mi muestra no impediría que este mismo individuo pudiese volver a ser seleccionado en una siguiente selección. Sería equivalente a decir que cada vez que extraigo un número al azar de mi urna, vuelvo a colocar el número antes de la siguiente extracción. Si por el contrario no usamos reposición, un individuo seleccionado para la muestra una vez ya no entraría nuevamente en el sorteo.

La pregunta obvia es, ¿qué es mejor, usar reposición o no usar reposición? Es un simple problema matemático. César Pérez López, en su libro "Muestreo Estadístico" (Pearson, 2005) desarrolla de forma muy clara una comparación entre ambas técnicas. Tanto si lo miramos desde el punto de vista de qué técnica genera estimaciones más precisas como desde el punto de vista de qué técnica me permite tener la misma precisión con menor tamaño de muestra, se puede concluir que el muestreo aleatorio simple sin reposición siempre es más eficiente.

Para poder observar este resultado, partimos de la siguiente expresión para el tamaño de muestra en un M.A.S. sin reposición. La fórmula relaciona el tamaño de muestra necesario cuando el universo es finito con el tamaño necesario cuando el universo es infinito:

formula1

donde n0 es el tamaño de muestra necesario para un universo infinito y N es el tamaño del universo finito. Es posible demostrar que el tamaño de muestra cuando usamos reemplazo (nr) es siempre igual al tamaño necesario para universo infinito (nr=n0). Si eso sucede, podemos afirmar que

formula2

Por lo tanto, el tamaño de muestra cuando no usamos reposición siempre es menor al necesario si usamos reposición. Este resultado coincide con la intuición: si estamos empleando reposición y por azar incluimos un individuo más de una vez en la misma muestra, el efecto es similar a reducir el tamaño de la muestra ya que observo menor diversidad de individuos. Del mismo modo, si el universo es infinito, ambos métodos coinciden, dado que la probabilidad de seleccionar al mismo individuo dos veces en la misma muestra tiende a ser infinitamente pequeña.

 

Beneficios del muestreo aleatorio simple

El desarrollo de la informática ha permitido que diseñar una muestra aleatoria simple sea extremadamente rápido y fiable. La generación de números aleatorios mediante software - estrictamente son números pseudo-aleatorios - es cada vez más fiable.

De esta forma, al usar M.A.S. nos aseguramos la obtención de muestras representativas, de manera que la única fuente de error que va a afectar a mis resultados va a ser el azar. Y lo que es más importante, este error debido al azar puede calcularse de forma precisa (o al menos acotarse). Puedes consultar el siguiente post para obtener más información.

 

Inconvenientes del muestreo aleatorio simple

El único inconveniente del M.A.S. es la dificultad de llevarlo a la práctica en investigaciones reales. Recordemos: al ser una técnica probabilística, necesito un marco muestral con todos los individuos y que todos ellos sean seleccionables para mi muestra. Un requisito que difícilmente puede cumplirse en la mayoría de estudios de mercado y opinión reales, lo que nos obligará a emplear otras técnicas.

En un próximo post veremos otra técnica de muestreo probabilístico muy popular: el muestreo estratificado. ¡Os esperamos!

 

ÍNDICE: Serie Muestreo

  1. El muestreo: qué es y por qué funciona
  2. Muestreo probabilístico o no probabilístico
  3. Muestreo probabilístico: muestreo aleatorio simple
  4. Muestreo probabilístico: muestreo estratificado
  5. Muestreo probabilístico: muestreo sistemático
  6. Muestreo probabilísitico: muestreo por conglomerados
  7. Muestreo no probabilístico: muestreo por conveniencia
  8. Muestreo no probabilístico: muestreo por cuotas
  9. Muestreo no probabilístico: muestreo por bola de nieve
Carlos Ochoa

Sobre el autor

Carlos Ochoa | Marketing and Innovation Manager

FREE EBOOK

The essentials of online data collection

Download free eBook

Netquest Blog Archives

Search and discover over last years latest market research topics.

View the archives

Suscríbete a nuestro blog

Recibe las últimas noticias aquí o en tu correo electrónico.

Al enviar este formulario, acepta la Política de privacidad de Netquest.